40 research outputs found

    A symmetry for vanishing cosmological constant

    Get PDF
    Two different realizations of a symmetry principle that impose a zero cosmological constant in an extra-dimensional set-up are studied. The symmetry is identified by multiplication of the metric by minus one. In the first realization of the symmetry this is provided by a symmetry transformation that multiplies the coordinates by the imaginary number i. In the second realization this is accomplished by a symmetry transformation that multiplies the metric tensor by minus one. In both realizations of the symmetry the requirement of the invariance of the gravitational action under the symmetry selects out the dimensions given by D = 2(2n+1), n=0,1,2,... and forbids a bulk cosmological constant. Another attractive aspect of the symmetry is that it seems to be more promising for quantization when compared to the usual scale symmetry. The second realization of the symmetry is more attractive in that it is posible to make a possible brane cosmological constant zero in a simple way by using the same symmetry, and the symmetry may be identified by reflection symmetry in extra dimensions.Comment: Talk in the conference IRGAC 2006, 2nd International Conference on Quantum Theories and Renormalization Group in Gravity and Cosmology, Barcelon

    What is there in the black box of dark energy: variable cosmological parameters or multiple (interacting) components?

    Get PDF
    The coincidence problems and other dynamical features of dark energy are studied in cosmological models with variable cosmological parameters and in models with the composite dark energy. It is found that many of the problems usually considered to be cosmological coincidences can be explained or significantly alleviated in the aforementioned models.Comment: 6 pages, 1 figure, talk given at IRGAC2006 (Barcelona, July 11-15, 2006), to appear in J. Phys.

    What is needed of a tachyon if it is to be the dark energy?

    Full text link
    We study a dark energy scenario in the presence of a tachyon field ϕ\phi with potential V(ϕ)V(\phi) and a barotropic perfect fluid. The cosmological dynamics crucially depends on the asymptotic behavior of the quantity λ=MpVϕ/V3/2\lambda=-M_pV_\phi/V^{3/2}. If λ\lambda is a constant, which corresponds to an inverse square potential V(ϕ)ϕ2V(\phi) \propto \phi^{-2}, there exists one stable critical point that gives an acceleration of the universe at late times. When λ0\lambda \to 0 asymptotically, we can have a viable dark energy scenario in which the system approaches an ``instantaneous'' critical point that dynamically changes with λ\lambda. If λ|\lambda| approaches infinity asymptotically, the universe does not exhibit an acceleration at late times. In this case, however, we find an interesting possibility that a transient acceleration occurs in a regime where λ|\lambda| is smaller than of order unity.Comment: 11 pages and 3 figures, minor clarifications added; final version to appear in PR

    String-inspired cosmology: Late time transition from scaling matter era to dark energy universe caused by a Gauss-Bonnet coupling

    Get PDF
    The Gauss-Bonnet (GB) curvature invariant coupled to a scalar field ϕ\phi can lead to an exit from a scaling matter-dominated epoch to a late-time accelerated expansion, which is attractive to alleviate the coincident problem of dark energy. We derive the condition for the existence of cosmological scaling solutions in the presence of the GB coupling for a general scalar-field Lagrangian density p(ϕ,X)p(\phi, X), where X=(1/2)(ϕ)2X=-(1/2)(\nabla \phi)^2 is a kinematic term of the scalar field. The GB coupling and the Lagrangian density are restricted to be in the form f(ϕ)eλϕf(\phi) \propto e^{\lambda \phi} and p=Xg(Xeλϕ)p=Xg (Xe^{\lambda \phi}), respectively, where λ\lambda is a constant and gg is an arbitrary function. We also derive fixed points for such a scaling Lagrangian with a GB coupling f(ϕ)eμϕf(\phi) \propto e^{\mu \phi} and clarify the conditions under which the scaling matter era is followed by a de-Sitter solution which can appear in the presence of the GB coupling. Among scaling models proposed in the current literature, we find that the models which allow such a cosmological evolution are an ordinary scalar field with an exponential potential and a tachyon field with an inverse square potential, although the latter requires a coupling between dark energy and dark matter.Comment: 18 pages, 4 figures, version to appear in JCA

    Scaling solutions and geodesics in moduli space

    Get PDF
    In this paper we consider cosmological scaling solutions in general relativity coupled to scalar fields with a non-trivial moduli space metric. We discover that the scaling property of the cosmology is synonymous with the scalar fields tracing out a particular class of geodesics in moduli space - those which are constructed as integral curves of the gradient of the log of the potential. Given a generic scalar potential we explicitly construct a moduli metric that allows scaling solutions, and we show the converse - how one can construct a potential that allows scaling once the moduli metric is known.Comment: 10 pages, 3 figure

    Accelerated expansion of a universe containing a self-interacting Bose-Einstein gas

    Full text link
    Acceleration of the universe is obtained from a model of non-relativistic particles with a short-range attractive interaction, at low enough temperature to produce a Bose-Einstein condensate. Conditions are derived for negative-pressure behavior. In particular, we show that a phantom-accelerated regime at the beginning of the universe solves the horizon problem, consistently with nucleosynthesis.Comment: 18 pages, 4 figure

    DGP Cosmology with a Non-Minimally Coupled Scalar Field on the Brane

    Full text link
    We construct a DGP inspired braneworld scenario where a scalar field non-minimally coupled to the induced Ricci curvature is present on the brane. First we investigate the status of gravitational potential with non-minimal coupling and observational constraints on this non-minimal model. Then we further deepen the idea of embedding of FRW cosmology in this non-minimal setup. Cosmological implications of this scenario are examined with details and the quintessence and late-time expansion of the universe within this framework are examined. Some observational constraints imposed on this non-minimal scenario are studied and relation of this model with dark radiation formalism is determined with details.Comment: 26 pages, 3 eps figure

    On compatibility of string effective action with an accelerating universe

    Full text link
    In this paper, we fully investigate the cosmological effects of the moduli dependent one-loop corrections to the gravitational couplings of the string effective action to explain the cosmic acceleration problem in early (and/or late) universe. These corrections comprise a Gauss-Bonnet (GB) invariant multiplied by universal non-trivial functions of the common modulus σ\sigma and the dilaton ϕ\phi. The model exhibits several features of cosmological interest, including the transition between deceleration and acceleration phases. By considering some phenomenologically motivated ansatzs for one of the scalars and/or the scale factor (of the universe), we also construct a number of interesting inflationary potentials. In all examples under consideration, we find that the model leads only to a standard inflation (w1w \geq -1) when the numerical coefficient δ\delta associated with modulus-GB coupling is positive, while the model can lead also to a non-standard inflation (w<1w<-1), if δ\delta is negative. In the absence of (or trivial) coupling between the GB term and the scalars, there is no crossing between the w1w -1 phases, while this is possible with non-trivial GB couplings, even for constant dilaton phase of the standard picture. Within our model, after a sufficient amount of e-folds of expansion, the rolling of both fields ϕ\phi and σ\sigma can be small. In turn, any possible violation of equivalence principle or deviations from the standard general relativity may be small enough to easily satisfy all astrophysical and cosmological constraints.Comment: 30 pages, 8 figures; v2 significant changes in notations, appendix and refs added; v3 significant revisions, refs added; v4 appendix extended, new refs, published versio

    Determination of the UV cut-off from the observed value of the Universe acceleration

    Get PDF
    It is shown that using of the equation of motion of the Universe scale factor allows calculation of the contribution of the vacuum fluctuations to the acceleration of the Universe expansion. Renormalization of the equation is needed only in the case of massive particles. Under a known number of the different kinds of fundamental fields, this provides determination of momentum of the ultraviolet cut-off from the observed value of acceleration.Comment: 10 pages, 1 figur

    Brane Cosmology with a Non-Minimally Coupled Bulk-Scalar Field

    Get PDF
    We consider the cosmological evolution of a brane in the presence of a bulk scalar field coupled to the Ricci scalar through a term f(\phi)R. We derive the generalized Friedmann equation on the brane in the presence of arbitrary brane and bulk-matter, as well as the scalar field equation, allowing for a general scalar potential V(phi). We focus on a quadratic form of the above non-minimal coupling and obtain a class of late-time solutions for the scale factor and the scalar field on the brane that exhibit accelerated expansion for a range of the non-minimal coupling parameter.Comment: 15 page
    corecore